«Технологии разговорного ИИ DeepPavlov упакованы в простой в развертывании контейнер, размещенный на NGC и оптимизированный для GPU. Это приложение позволяет разработчикам по всему миру создавать масштабируемые, надежные и готовые к внедрению решения так быстро, как никогда раньше, — рассказывает руководитель проекта DeepPavlov, заведующий лабораторией нейронных систем и глубокого обучения МФТИ Михаил Бурцев. — Благодаря совместной работе с NVIDIA мы стали частью NGC и одной из немногих компаний-партнеров в России».
Российские компании могут применять контейнеры DeepPavlov для решения различных задач, среди которых автоматизация процессов колл-центров и обслуживания клиентов, создание систем ответов на вопросы по внутренней документации, анализ настроений и отзывов клиентов, внедрение готовых диалоговых систем и прикладных исследований в области обработки естественного языка. Контейнер DeepPavlov состоит из предварительно обученных моделей, которые используют современные модели глубокого обучения типа BERT, для классификации, распознавания именованных сущностей, вопросов-ответов и других задач области NLP. Использование GPU позволяет ускорить работу библиотеки DeepPavlov до 20 раз (для примера был взят запуск конвейеров ASR / TTS на V100 GPU в сравнении с CPU).