Исторически российский рынок бизнес-аналитики формировался благодаря постоянно растущему спросу на анализ корпоративных данных со стороны крупных компаний и холдингов. Заказчиками услуг в области обработки данных и создания BI-систем обычно были ИТ-подразделения, которые отвечали как за ИТ-инфраструктуру, так и за внедрение и развитие бизнес-приложений. Однако, получившие развитие в последние годы технологические тенденции способны резко изменить направление развития рынка.
Уже на протяжении нескольких лет как в мире, так и в России быстро происходит процесс, который можно назвать демократизацией данных. Сегодня даже небольшая компания собирает и обрабатывает много данных о продажах, транзакциях, сотрудниках и клиентах. Применение бизнес-аналитики помогает оптимизировать процессы и резко снизить издержки. Кроме того, анализ данных открывает путь для выявления точек роста и поиска новых бизнес-моделей, что превращает BI в основу для цифровой трансформации предприятий.
1. Дефицит специалистов сдерживает рост рынка.
В 2018 расширение использования компаниями бизнес-аналитики сдерживалось дефицитом доступных на рынке специалистов в области работы с данными. Причём недоставало всех типов специалистов, которые обычно составляют проектную команду по созданию BI-системы: разработчиков, администраторов, архитекторов данных. Наиболее вероятная причина резкого дефицита кадров в 2018 году — это шаги по формированию собственной экспертизы, которые начиная с 2015 г. предпринимает большинство крупнейших российских предприятий.
“Хороших команд мало, это сдерживает рост рынка, — говорит Дмитрий Киселев, Генеральный директор Qlever Solutions, — учебные заведения не могут выпускать готовых специалистов по работе с данными. Студентам требуется опыт в сколь-нибудь успешных проектах”.
В 2019 году дефицит специалистов по работе с данными сохранится. Рынок будет приспосабливаться и стоимость часовых ставок квалифицированных разработчиков и архитекторов начнет расти. У поставщиков услуг могут значительно измениться приоритеты в корпоративном управлении. Если сегодня их усилия направлены на поддержание своей технической экспертизы, то в следующем году им придется больше внимания уделять формированию культуры управления проектами. Это позволит поставщикам услуг начать экономить время наиболее квалифицированных разработчиков и включать в проектные команды начинающих специалистов и выпускников ВУЗов.
С другой стороны, инструменты для работы с данными становятся проще и сегодня уже не требуются какие-то специальные знания для того, чтобы самостоятельно научиться простейшим действиям с любой из популярных BI-платформ. Начнет меняться распространенное в России мнение о том, будто бизнес-аналитика доступна лишь крупным компаниям. В результате интерес к анализу своих данных в 2019 году появится у небольшого бизнеса.
Однако, потребности со стороны традиционных и наиболее крупных в России заказчиков бизнес-аналитики будут смещаться в сторону сложных услуг — именно в этом сегменте и будет наблюдаться дефицит специалистов.
2. Гибкие методики управления проектами позволяют создавать сложные BI-системы.
Тенденцией 2018 года стало распространение гибких методик (Agile) в управлении BI-проектами. Применение Agile позволяет заказчикам сразу, не дожидаясь окончания проекта, начать пользоваться результатами отдельных этапов.
Такой подход имеет целый ряд преимуществ. В их числе: ниже проектные риски, проще планировать ресурсы, выше предсказуемость хода проекта и инвестиций. Кроме того, если меняются требования, то применение гибких методик позволяет корректировать течение проекта — менять приоритетность задач и подключать нужных специалистов.
В области работы с данными гибкие методики сегодня быстро превращаются в стандартный для индустрии подход к созданию BI-систем. Это уже не просто метод, который позволяет ускорить разработку и сэкономить деньги.
“Раньше типичной задачей был отчёт или дэшборд — говорит Андрей Харлак, технический директор Qlever Solutions,— заказчик точно знал, какой результат ему нужен. Специалист искал ответ на вопрос, как из сырых данных получить требуемый отчёт. Но сегодня всё наоборот. У компании есть данные, причём много данных. Никто не знает, что из них можно извлечь и кому из бизнес-пользователей пригодится тот или иной показатель. Приходится отталкиваться от данных — смотреть на их качество и полноту, на источники, на потребности конкретных бизнес-пользователей и их готовность применять ту или иную информацию. Здесь не работает традиционный подход, где результат известен уже на старте”.
В течение 2018 года компания Qlever Solutions начала оказывать услуги по модели Agile всем своим заказчикам, имеющим более 1000 рабочих мест. В течение года специалисты, отвечающие в Qlever Solutions за управление проектами, прошли обучение в ICAgile (The International Consortium for Agile), а внутренняя информационная система изменена в соответствии с идеологией Agile-методов.
3. Вторая волна интереса к BI: решение накопившихся проблем требует экспертизы.
Задачи, с которыми заказчики в течение 2018 г. обращались в Qlever Solutions, были сложнее с технической точки зрения, чем раньше. Часть запросов была связана с неудовлетворенностью работой уже созданных BI-систем — заказчиков не устраивала скорость получения отчётов и время отклика BI-приложений. Выросло число запросов на создание BI-систем, разработка которых требует большой проектной команды из разных специалистов — разработчиков, администраторов и специалистов в области Data Science.
Первая проблема, с которой сталкиваются заказчики — это слишком большой промежуток времени от события до отражения его в отчетности.
Еще несколько лет назад событие отражалось в отчёте спустя несколько часов после его наступления. Такая скорость формирования отчётности считалась приемлемой. Но сегодня требования меняются. Заказчикам нужно, чтобы загрузка и трансформация данных происходила за несколько минут. Скорость доставки отчетов особенно важна для крупных компаний с географически-распределенными филиалами и многоуровневой структурой управления.
“Представим себе сеть ресторанов в 6 часовых зонах, где работают тысячи сотрудников, —говорит Дмитрий Саввин, архитектор решений Qlever Solutions,— каждое утро в 9:00 по местному времени территориальные управляющие проводят планерку с директорами своих ресторанов. Им нужны свежие показатели, а не позавчерашние. Иначе в ходе планерки они не смогут ничего решить. В масштабах всей сети такая неопределенность стоит очень дорого”.
Вторая проблема — быстрый рост сложности структуры хранения и обработки корпоративных данных. У компаний накопилось много данных, которые созданы разными способами, хранятся в разных системах и сильно отличаются с точки зрения качества и пригодности для анализа. Так, количество данных у компаний выросло, а их качество упало.
В результате простое решение, функциональность которого состоит из загрузки данных из нескольких источников и превращения их в таблицы или диаграммы, скорее всего окажется бессмысленным в том случае, если при его проектировании не учитывалось качество данных в разных системах, их полнота и особенности хранения.
“Эпоха поверхностного BI быстро уходит, — говорит Дмитрий Киселев, — бизнес-аналитика перестала отталкиваться от дэшбордов. Сегодня проекты должны начинаться с данных — с поиска ответов на вопрос о том, достаточно ли их для решения бизнес-задач, как нужные данные получить и интегрировать”.
4. Меняется роль ИТ-служб: они теряют инициативу и становятся сервисными.
До 2018 года ИТ-руководители обычно становились инициаторами и ключевыми участниками тех проектов, которые связаны с обработкой данных. В качестве проектной команды со стороны заказчика выступали ИТ-специалисты. Однако, уже в 2018 г. число вовлеченных в проекты функциональных менеджеров резко выросло и стало превышать количество ИТ-специалистов. Роль ИТ-подразделений стала превращаться в сервисную — они обеспечивают инфраструктуру для обработки данных и определяют регламенты. Владельцами данных все чаще становятся бизнес-пользователи.
На стороне поставщика услуг всё чаще будут появляться владельцы продукта (product owner). Понимание бизнес-процессов заказчика позволяет владельцу продукта учитывать и объединять запросы менеджеров из разных кросс-функциональных областей. Например, такое понимание значительно упростит разработку в том случае, когда из одних и тех же данных создаются отчеты для разных департаментов.
5. BI для Big Data: использование BI-платформ для анализа больших данных.
Традиционно BI-платформы использовались компаниями для анализа внутренних данных — то есть тех данных, которые создаются и обрабатываются в корпоративных информационных системах. Это данные о продажах, о клиентах, о движении товаров, показатели эффективности процессов (KPIs). Однако, в 2018 г. бизнес-руководители все чаще хотели научиться извлекать пользу из объединения своих внутренних данных с внешними. Это могут быть данные из открытых источников, геоданные, а также данные, которые накапливаются у компаний, собирающих их попутно со своей основной деятельностью. В 2019 году к числу поставщиков данных могут добавиться операторы фискальных данных (ОФД). Также оказать влияние на рынок открытых данных может расширение списка товаров, подлежащих обязательной маркировке, которая сделает рынок более прозрачным не только для контролирующих органов, но и для поставщиков.